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ABSTRACT 

We compare the canonical hamiltonian of the 

monopole-fermion system, derived by Goldstein and Yamagishi, 

with the hamiltonian derived by Callan in the bosonized 

formulation. 
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The dynamics of the monopole fermion system has been 

considered by many authorslV5. In particular, Callan’ has 

derived the effective hamiltonian for an SU(Z) monopole 

interacting with fermions belonging to the doublet 

representation of the SU(2) group. The hamiltonian takes a 

simple form in the bosonized version of the model. For 

massless fermions, the hamiltonian is the sum of a free 

hamiltonian for scalar fields, and an interacting part, 

given by, 
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1 electric charge of the where eQ(r)/2Jn measures the tota 

system inside a sphere of radius I‘. 

of the monopole core, hence eQ(ro 

charge inside the core. 

Here r. is the radius 

j/2/71 measures the total 

An alternative formulation of the problem, based on the 

canonical quantization of the dyon fermion system, has been 

given by Yamagishi 4 and Goldstein 5 . In Yamagishi’s notation, 

the effective interaction hamiltonian is given by, 
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where the variable @ is associated with the dyonic 
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excitation, and p(r) denotes the contribution to the 

electric charge density (multiplied by 4nr2) from the 

Fermion fields. Here, 

G (Pt,.qO = 8 (92-a’ 1 T(rzJ J (A’ 1 + 8 (A’-* J T(4’) J(pcj 
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where J, 3 at-e solutions of the equation, 
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satisfying the boundary conditions, 
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m w being the scale of breaking of the SU(2) group. K(r) is 

a function which appears in the expression for the gauge 

field of a classical It Hooft-Polyakov monopole. K(r) 

satisfies, 

KC/r) -3 I as h -+ 0 -hv& 
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The quantity I in Eq.(2) and (5) is of order mw-‘, and may 

be expressed as a function of the parameters of the theory. 

The total charge of the system is given by, 

Q tot - .r + t &7) z-(%1 cl& 
0 (7) 
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The purpose of this report is to show that the 

hamiltonian given in (2) reduces to (1) in the proper limit. 

To do this we define the monopole radius to be ~O=Dl, -1/c, 

where E is a small but Fixed number. We shall ignore all 

terms of order exp(-l/E). Using (3) and (5), we may write, 

G(A,..%‘J = ; J-(4’) $A KTfio, ?L’( ‘c, cg I 
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Using (‘7) and (5), we get, 
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We define a variable Q(r) for riro, such that, 

ii%) - Q,-+ - ~?V& d,n’ 
ZrT J- 4 

(1 ’ ) 

is the total charge inside a sphere of radius r, since 

lp(r’) dr’ is the total charge outside a sphere of radius r. 

Another way to see that this is the total charge inside a 

sphere of radius r is to compute the radial electric field 

at P, which comes out to be e@(r)/2fir2. 



From (11) we get, 
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and, 
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Using Eqs.(lO) and (13) we may eliminate Qtot and 6 from 

(Z), and a straight calculation using Eqs. (8), (9) and 

(11) shows that (2) may be brought into the form, 
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Let us now define, 

fta) = f iJs1 
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Then, for r<ro 
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since G(r,r’) satisfies the equation, 
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Using (15), (16) and (5), and doing a” integration by parts 

carefully treating the boundary term at rO, we m=Y show 

that, 

G (9( ,.9<‘) c’(E) 4c.4’1 
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Thus the hamiltonian reduces to, 
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The last two terms of the above hamiltonian are 

identical to the last two terms of (1). I” fief.(2), 

however, the fermionic degrees of freedom for r<r 0 were 

ignored, and hence (1) must be regarded as a” effective 

hamiltonian involving the fermionic degrees of freedom I-Ok- 
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r>r0. I” order to COlllpCiPl2 the two hamiltonians, we must 

eliminate the fermionic coordinates for r<rO by using their 

equations of motion, and obtain the effective hamiltonian 

involving the fields Q(r) for r,rO. Looking at the first two 

terms inside [...I in (191, we see that this contribution is 

bounded from below by 

(ZI + a~lTY?“/e”)-’ (gQ7.])Z/qTi. 

and hence the contribution from the terms inside [...I in 

(19) may be written as ae2@(r0)*/(32n2rO), where a is a 

constant of order unity. The net effective hamiltonian is 

then given by, 

f cz cl.92 c (I Qs(4JZ + 3 9;C.k) l Q,(-c-- mb)) +(qx4J-m$] Y 3,?li~&Z 

which is identical to (1)) except for the factor a 

multiplying the first term. The deviation of a from unity 

is due to the interaction energy inside the core, and does 

6 not significantly affect any physical result . 

One of the major lessons that we learn from this 

treatment is that for a dyon fermion system we should not 

interprete the charge 14 to be stored inside the monopole 

core ( since parts of the second and third terms in (1) come 

from the Ii2 term in (2j8. The fact that Ii should not be 

treated as a localized charge inside the core was also noted 
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in Ref.4. 

I wish to thank H. Yamagishi for useful correspondence 

which led to this work, and A. S. Goldhaber, 

A. N. Schellekens and C. Sehmid for discussions. 
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0" the other hand the charge Q=Qtot 

a 
f&j dr' 

=I$+I J(r')p(r') dr'is localized inside the core, since the 
L: 

electric field at a point r>>mw -' is given by 
7 

e(ti+lp(r') dr')/4nr2. 
^ 

Hence Q may be interpreted as the charge 

associated with the dyonic degree of freedom. 


